On a New Generalization of Bernstein-Type Rational Functions and Its Approximation

نویسندگان

چکیده

In this study, we introduce a new generalization of Bernstein-type rational function possessing better estimates than the classical function. We investigate its error approximation globally and locally in terms first second modulus continuity class Lipschitz-type functions. present graphical comparisons with illustrative examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators

In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...

متن کامل

A Generalization of Rational Bernstein Bézier Curves

This paper is concerned with a generalization of BernsteinBézier curves. A one parameter family of rational BernsteinBézier curves is introduced based on a de Casteljau type algorithm. A subdivision procedure is discussed , and matrix representation and degree elevation formulas are obtained. We also represent conic sections using rational q-BernsteinBézier curves.

متن کامل

Rational Bernstein and spline approximation. A new approach

Some new families of rational Bernstein and spline approximants in one and several variables are defined and some of their properties are studied.

متن کامل

Bernstein type operators with a better approximation for some functions

In this paper we construct new operators of Bernstein type with a better approximation than the classical Bernstein operator for some classes of functions on the whole interval [0,1]. Convergence of these operators and their shape preserving properties are discussed. We determine the subintervals in [0,1] in which the approximation order of constructed operators is better than that of the Berns...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10060973